If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10u^2-19u-15=0
a = 10; b = -19; c = -15;
Δ = b2-4ac
Δ = -192-4·10·(-15)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-31}{2*10}=\frac{-12}{20} =-3/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+31}{2*10}=\frac{50}{20} =2+1/2 $
| x/66=56/77 | | -m-7(-2m-6)=94 | | 5 | | 4p^2-5p-1=4p | | 5(2x+3)-5.5x=28.6 | | 4.2^2x+3.2^x-1=0 | | 2x-2=x-9+2x+8 | | 2x^2+8x=-20 | | 4c^2+32c=-140 | | 4x-7=2×+13 | | 500x2=100 | | 7x(4x+3)=3x+2 | | 46/18=n/36 | | 3x²+4=151 | | (7t-4t^2)+15*(3t+3)=0 | | 2,1+0,3y=0 | | x/5=2x-4 | | 4j+j=145 | | (3^x)(4^(x+2)=8 | | n/12=9/12n= | | 2t^2+14t-20=0 | | -9+6p=27 | | 9x-21=-20x-87 | | 14,00+160p=24,000-200p | | 14,000+160p=24,000+200p | | 14/6m=7 | | 3(x+6)= 48 | | 9r-17+3r=13 | | -19=-37+8x | | 3c+2= −10 | | 3c+2=3c+2= −10 | | 3c+2=3c+2= −10− |